Ex-Stream: a program for calculating vertical fluid flux in porous media based on temperature profiles

CAGS2011Temperature is a useful environmental tracer for quantifying movement and exchange of water and heat through and near sediment–water interfaces (SWI). Heat tracing involves analyzing temperature time series or profiles from temperature probes deployed in sediments. Ex-Stream is a MATLAB program that brings together two transient and two steady one-dimensional coupled heat and fluid flux analytical models. The program includes a graphical user interface, a detailed user manual, a practice data set from Swanson and Cardenas (2010)[1], and postprocessing capabilities that enable users to extract fluid fluxes from time-series temperature observations. CAGS2011cProgram output is written to comma-separated values files, displayed within the MATLAB command window, and may be optionally plotted. The models that are integrated into Ex-Stream can be run collectively, allowing for direct comparison, or individually.



[1] Swanson, T., and M. Cardenas, 2010, Diel heat transport within the hyporheic zone of a pool-riffle-pool sequence of a losing stream and evaluation of models for fluid flux estimation using heat: Limnology and oceanography, v. 55, p. 1741-1754.

Investigating the hyporheic zone of a pool–riffle–pool sequence using natural heat as a tracer


A pool-riffle-pool sequence is a nearly ubiquitous element of stream bed morphology. The variabiltiy in bed elevation is thought to allow surface water to infiltrate through the stream bed the head of a riffle and upwell back to the stream at the tail of the riffle in a pool-riffle-pool (PRP) sequence, thus driving a surface water-ground water interaction termed hyporheic exchange. Because infiltrating surface water transports heat from daily heating and cooling; Heat tracing within the streambed sediments is a potentially useful method to characterize hyporheic exchange. For this purpose, temperature was monitored within a PRP sequence for several days at Jaramillo Creek in the Valles Caldera National Preserve. Temperature in the hyporheic zone below the pool-riffle-pool sequence reflected the diel temperature change in Jaramillo Creek but not uniformly. The observed thermal pattern exhibited deeper penetration of thermal oscillations below the head pool and shallower penetration below the tail pool. Play the video below to watch diel cycles of temperature change in sediments below a pool-riffle-pool sequence:

To learn more about one-dimensional analytical heat transport (tracing) models that can use such temperature information to estimate the exchange of water between streams and their associated aquifers, check out the manuscript by clicking on the image at the top of this blog post.