Getting ready for AGU 2017!

Exploring the morphodynamic response of coastal barriers to sea-level rise along the Texas Gulf Coast

Swanson, T.1, Lorenzo-Trueba, J.2, Anarde, K.1, Odezulu, C.1, Anderson, J.1, Nittrouer, J1.

1 Rice University
2 Montclair State University

The Texas portion of the Gulf Coast spans nearly 600 kilometers and is chiefly composed of barrier islands and peninsulas that shelter numerous landward communities from damaging storm surge and waves. Presently, this coastal barrier system is evolving at an unprecedented rate, as sediment that comprises these protective barriers is being depleted while sea-level rise is accelerating, reducing the resilience of coastal communities. To help explain the morphodynamic response of Texas’ coastal barrier system to anticipated accelerated sea-level rise, a reduced complexity morphodynamic model is constructed from a combination of extant models of barrier morphodynamics, alongshore sediment transport, and time-variable ravinement depth. The model is initialized using a simplified geometric depiction of the barrier system morphology obtained from regional bathymetric and topographic surveys, and sediment composition from best-available subsurface geodatabases. Simulation timesteps capture the morphodynamic response of coastal barriers to accelerated sea-level rise by tracking the motion of key geomorphic boundaries within the barrier system: ravinement depth, shoreline, and bay line. The motion of these boundaries is calculated via parameterized expressions of alongshore, cross-shore, and barrier over-wash sediment transport that represent the time-integrated effect of short-term coastal processes, such as day-to-day waves and storms, and longer-term processes such as sea-level rise, dynamic barrier morphology, and barrier sediment composition. Model results are comparable with historical records and geological interpretations of regional coastal change sampled over a broad range of time and spatial scales.

Time and location: Tuesday, 12 December 2017 14:10 – 14:25 New Orleans Ernest N. Morial Convention Center – 353-355

Please check out the innovative work presented by Ben Cardenas, which uses a surface model for aeolian dune topography, with newly developed routines that allow for aeolian dune climb, and preservation of dune stratification:

Coupling Aeolian Stratigraphic Architecture to Paleo-Boundary Conditions: The Scour-Fill Dominated Jurassic Page Sandstone

Cardenas, B.1, Kocurek, G.1, Mohrig, D.1, Swanson, T2.

1 The University of Texas at Austin
2 Rice University

The stratigraphic architecture of aeolian sandstones is thought to encode signals originating from both autogenic dune behavior and allogenic boundary conditions within which the dune field evolves. Mapping of outcrop-scale bounding surfaces and sets of cross-strata between these surfaces for the Jurassic Page Sandstone near Page, AZ, USA, demonstrates that dune autogenic behavior manifested in variable dune scour depth, whereas the dominant boundary conditions were antecedent topography and water-table elevation. At the study area, the Page Sandstone is ~ 60 m thick and is separated from the underlying Navajo Sandstone by the J-2 regional unconformity, which shows meters of relief. Filling J-2 depressions are thin, climbing sets of cross-strata. In contrast, the overlying Page consists of packages of one to a few, meter-scale sets of cross-strata between the outcrop-scale bounding surfaces. These surfaces, marked by polygonal fractures and local overlying sabkha deposits, are regional in scale and correlated to high stands of the adjacent Carmel sea. Over the km-scale outcrop, the surfaces show erosional relief and packages of cross-strata are locally truncated. Notably absent within these cross-strata packages are early dune-field accumulations, interdune deposits, and apparent dune-climbing. These strata are interpreted to represent a scour-fill architecture created by migrating large dunes within a mature dry aeolian sand sea, in which early phases of dune-field construction have been cannibalized and dune fill of the deepest scours is recorded. At low angles of climb, set thickness is dominated by the component of scour-depth variation over the component resulting from the angle of climb. After filling of J-2 depressions, the Page consists of scour-fill accumulations formed during low stands. Carmel transgressions limited sediment availability, causing deflation to the water table and development of the regional bounding surfaces. Each subsequent fall of the water table with Carmel regressions renewed sediment availability, including local breaching of the resistant surfaces and cannibalization of Page accumulations. The Page record exists because of preservation associated with Carmel transgressions and subsidence, without which the Page would be represented by an erosional surface.

Time and location: Wednesday, 13 December 2017 13:40 – 18:00 New Orleans Ernest N. Morial Convention Center – Poster Hall D-F

The dynamics of spur-bearing bedforms

sedimentologyPaper2017Bedform spurs are formed by helical vortices  that trail from the lee surface of oblique segments of bedform crest lines. Trailing helical vortices quickly route sediment away from the lee surface of their parent bedform, scouring troughs and placing this bed material into the body of the spur. Here’s a video of a single bedform spur:

When present, spur-bearing bedforms and their associated trailing helical wakes exert tremendous control on bedform morphology by routing enhanced sediment transport between adjacent bedforms. Field measurements collected at the North Loup River, Nebraska, and flume experiments described in previous studies demonstrate that this trailing helical vortex-mediated sediment transport is a mechanism for bedform deformation, interactions and transitions between two-dimensional and three-dimensional bedforms. Below is a time lapse image of many spur bearing bedforms. Watch as they pause and surge due to spur-routing of sediment transport.

Click on the picture of the manuscript heading to visit the publisher’s webpage and access more information about spur bearing bedform dynamics, including more videos!

Rice Coastal Sedimentology celebrates World Oceans Day

oceansDay2017

Members of the Coastal Sedimentology Group (myself included!) preformed physical demonstrations of processes responsible for sea level rise and how higher sea levels threaten coastal communities for World Oceans Day at the Houston Museum of Natural Science. A big thanks to Dr. Lauren Simkins, Lindsay Portho, and Tian Dong for making our time at the museum a success! Thanks to Dr. Simkins for developing an informative pamphlet which can be downloaded via this link. More information surrounding this event is available on the Rice University webspage and through a “News Fix” video made possible by CW 39.

oceansDay2017b

My role in this collaborative effort was to design and construct a two dimensional wave tank with a highly exaggerated profile of coastal relief, dynamic sea level control and a paddle wave maker to demonstrate how rising sea level allows storm waves and even fair weather waves to over-top protective barrier islands and threaten coastal communities. The wave tank was constructed using many opensource hardware and software tools. Please send me a quick note if you would like plans or help constructing your own wave tank; otherwise check this blog again, as I intend to do a write-up on how to build, wire, and program the wave tank. It was a lot of fun to construct! A big thanks to the Shell Center for Sustainability for funds to purchase components to build the tank.

Coastal Sedimentology Poster at Industry-Rice Earth Science Symposium (IRESS) 2017

iress2017The morphodynamic depth of closure, signifies the depth at which fluid motion is unable to move sediment, and morphological change ceases. A very timely contribution from Ortiz et al (2016)[1]  expresses depth of closure as a function of both wave climate and a time scale of interest. At IRESS 2017, I presented a quick first-pass applying Ortiz’s model and adopting their workflow for application to the Texas coast using Army Corps of Engineers’ WIS hindcast information and the Coastal Relief Model from NOAA. Although Ortiz’ model does not do well to describe the rather tranquil wave climate of the Texas coast, the results show that fair weather wave base is typically above 4 m water depth, and may increase in depth slightly from the Upper Texas coast to the Lower Texas coast. These predictions crudely agree with depth profiles of morphological change estimated by differencing sequential shoreface profiles obtained by Texas A&M University Corpus Christi which are available from their Coastal Habitat Restoration GIS website. Click on the picture of the poster to download a PDF copy.

[1] Ortiz, A. C., and A. D. Ashton (2016), Exploring shoreface dynamics and a mechanistic explanation for a morphodynamic depth of closure, J. Geophys. Res. Earth Surf.,121,442–464, doi:10.1002/2015JF003699. (PDF link)

A new surface model for aeolian dune topography

MatGeoPaper2016Aeolian dune topography arises from a highly non-linear interaction between sediment transport,  topography, and boundary shear stress.  To explore the growth of aeolian dunes under a variety of boundary conditions, a new surface model for aeolian bedform topography is adapted from a surface model of subaqueous bedform topography (Jerolmack and Mohrig, 2005)[1]. The resulting modeling framework approximates the dynamic motions of aeolian bedform topography driven by bedform field boundary conditions; namely, different distributions of sediment transport direction and investigating bedform growth with and without the constraint of a fixed sediment source area (modeled as a fixed elevation boundary). The rates at which modeled aeolian bedforms grow and morphologically mature are found to be highly sensitive to the chosen boundary conditions. Click on the image of the manuscript header to visit the journal’s website and read more about this study.

The videos below show four permutations of two boundary conditions: uni- and bi-modal distributions of sediment transport direction are used to grow bedform topography with and without the constraint of a sediment source area. In these videos hot colors indicate higher topography and cooler colors indicate lower topography.

Uni-modal distribution of sediment transport direction with periodic boundaries

Uni-modal distribution of sediment transport moving sediment from a fixed source

Bi-modal distribution of sediment transport direction with periodic boundaries

Bi-modally distributed sediment transport moving sediment from a fixed source

The aeolian bedform surface model code is malleable and readily modified for exploratory study of bedform topography that inherits morphological traits from aeolian bedform field boundary conditions. A version of the source code for these simulations is available from MATGEO. However, a newer version of this software will be made available via a public repository on GitHub, shortly.

[1] Jerolmack DJ, Mohrig D (2005) A unified model for subaqueous bed form dynamics. Water Resour Res 41(12):W12421. doi:10.1029/2005WR004329 (PDF link)

Self organization of aeolian dunes

sedimentologyPaperTitle2016Aeolian dune motion is thought to be driven by an annual cycle of sediment-transporting wind events. Each wind event drives uneven motion of dune crestlines, yet dune crestlines align as a trend to an annual cycle of wind . Understanding the variability in dune motion over such a cycle aids the interpretation of aeolian cross-stratification, often available only in the limiting exposure of core and outcrop.

Digital elevation models obtained by light detection and ranging (lidar, Fig. 1) are used to estimate dune brink motion and sediment flux along the sinuous crestlines of crescentic dunes at White Sands gypsum dune field (south-central New Mexico, USA) over an annual cycle of wind.

1.gif
Fig. 1 Time lapse animation of dune elevation of study area within White Sands, NM. Duration is approximately 3 yrs.

By using an edge detection algorithm, dune brink motion  (Fig. 1) can be used to estimate local values of sediment flux. These estimations reveal that dune motion and sediment flux are very well described by a circular normal distribution when sampled using a spatial window of approximately the size of six average dunes. At this scale, the distribution of erratic dune motion is symmetrically distributed around the average lee surface dip direction. Therefore, uneven motion of dune crest lines offset, and the geometric self-organization of dune crests as a trend line is maintained.

sedimentologyPaper2016
Fig. 2 Dune brink movement occurring over slightly more than a year is shown by the colormapped circles. The elevation of the aeolian dunes is shown by the grayscale.

Ex-Stream: a program for calculating vertical fluid flux in porous media based on temperature profiles

CAGS2011Temperature is a useful environmental tracer for quantifying movement and exchange of water and heat through and near sediment–water interfaces (SWI). Heat tracing involves analyzing temperature time series or profiles from temperature probes deployed in sediments. Ex-Stream is a MATLAB program that brings together two transient and two steady one-dimensional coupled heat and fluid flux analytical models. The program includes a graphical user interface, a detailed user manual, a practice data set from Swanson and Cardenas (2010)[1], and postprocessing capabilities that enable users to extract fluid fluxes from time-series temperature observations. CAGS2011cProgram output is written to comma-separated values files, displayed within the MATLAB command window, and may be optionally plotted. The models that are integrated into Ex-Stream can be run collectively, allowing for direct comparison, or individually.

 

 

[1] Swanson, T., and M. Cardenas, 2010, Diel heat transport within the hyporheic zone of a pool-riffle-pool sequence of a losing stream and evaluation of models for fluid flux estimation using heat: Limnology and oceanography, v. 55, p. 1741-1754.