Getting ready for AGU 2017!

Exploring the morphodynamic response of coastal barriers to sea-level rise along the Texas Gulf Coast

Swanson, T.1, Lorenzo-Trueba, J.2, Anarde, K.1, Odezulu, C.1, Anderson, J.1, Nittrouer, J1.

1 Rice University
2 Montclair State University

The Texas portion of the Gulf Coast spans nearly 600 kilometers and is chiefly composed of barrier islands and peninsulas that shelter numerous landward communities from damaging storm surge and waves. Presently, this coastal barrier system is evolving at an unprecedented rate, as sediment that comprises these protective barriers is being depleted while sea-level rise is accelerating, reducing the resilience of coastal communities. To help explain the morphodynamic response of Texas’ coastal barrier system to anticipated accelerated sea-level rise, a reduced complexity morphodynamic model is constructed from a combination of extant models of barrier morphodynamics, alongshore sediment transport, and time-variable ravinement depth. The model is initialized using a simplified geometric depiction of the barrier system morphology obtained from regional bathymetric and topographic surveys, and sediment composition from best-available subsurface geodatabases. Simulation timesteps capture the morphodynamic response of coastal barriers to accelerated sea-level rise by tracking the motion of key geomorphic boundaries within the barrier system: ravinement depth, shoreline, and bay line. The motion of these boundaries is calculated via parameterized expressions of alongshore, cross-shore, and barrier over-wash sediment transport that represent the time-integrated effect of short-term coastal processes, such as day-to-day waves and storms, and longer-term processes such as sea-level rise, dynamic barrier morphology, and barrier sediment composition. Model results are comparable with historical records and geological interpretations of regional coastal change sampled over a broad range of time and spatial scales.

Time and location: Tuesday, 12 December 2017 14:10 – 14:25 New Orleans Ernest N. Morial Convention Center – 353-355

Please check out the innovative work presented by Ben Cardenas, which uses a surface model for aeolian dune topography, with newly developed routines that allow for aeolian dune climb, and preservation of dune stratification:

Coupling Aeolian Stratigraphic Architecture to Paleo-Boundary Conditions: The Scour-Fill Dominated Jurassic Page Sandstone

Cardenas, B.1, Kocurek, G.1, Mohrig, D.1, Swanson, T2.

1 The University of Texas at Austin
2 Rice University

The stratigraphic architecture of aeolian sandstones is thought to encode signals originating from both autogenic dune behavior and allogenic boundary conditions within which the dune field evolves. Mapping of outcrop-scale bounding surfaces and sets of cross-strata between these surfaces for the Jurassic Page Sandstone near Page, AZ, USA, demonstrates that dune autogenic behavior manifested in variable dune scour depth, whereas the dominant boundary conditions were antecedent topography and water-table elevation. At the study area, the Page Sandstone is ~ 60 m thick and is separated from the underlying Navajo Sandstone by the J-2 regional unconformity, which shows meters of relief. Filling J-2 depressions are thin, climbing sets of cross-strata. In contrast, the overlying Page consists of packages of one to a few, meter-scale sets of cross-strata between the outcrop-scale bounding surfaces. These surfaces, marked by polygonal fractures and local overlying sabkha deposits, are regional in scale and correlated to high stands of the adjacent Carmel sea. Over the km-scale outcrop, the surfaces show erosional relief and packages of cross-strata are locally truncated. Notably absent within these cross-strata packages are early dune-field accumulations, interdune deposits, and apparent dune-climbing. These strata are interpreted to represent a scour-fill architecture created by migrating large dunes within a mature dry aeolian sand sea, in which early phases of dune-field construction have been cannibalized and dune fill of the deepest scours is recorded. At low angles of climb, set thickness is dominated by the component of scour-depth variation over the component resulting from the angle of climb. After filling of J-2 depressions, the Page consists of scour-fill accumulations formed during low stands. Carmel transgressions limited sediment availability, causing deflation to the water table and development of the regional bounding surfaces. Each subsequent fall of the water table with Carmel regressions renewed sediment availability, including local breaching of the resistant surfaces and cannibalization of Page accumulations. The Page record exists because of preservation associated with Carmel transgressions and subsidence, without which the Page would be represented by an erosional surface.

Time and location: Wednesday, 13 December 2017 13:40 – 18:00 New Orleans Ernest N. Morial Convention Center – Poster Hall D-F

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s